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Abstract

A ray�tracing method inspired by ergodic billiards is used to estimate

the theoretically best decision rule for a given set of linear separable

examples� For randomly distributed examples the billiard estimate

of the single Perceptron with best average generalization probability

agrees with known analytic results� while for real�life classi�cation

problems the generalization probability is consistently enhanced when

compared to the maximal stability Perceptron�

� Introduction

Neural networks can be used for both concept learning �classi�cation� and for
function interpolation and�or extrapolation� Two basic mathematical meth�
ods seem to be particularly adequate for studying neural networks� geom�
etry �especially combinatorial geometry� and probability theory �statistical
physics�� Geometry is illuminating and probability theory is powerful�

In this paper I consider the perhaps simplest neural network	 the vener�
able Perceptron 
��� given a set of examples falling in two classes	 �nd the
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Figure �� The Perceptron as neural network

linear discriminant surface separating the two sets	 if one exists� In this con�
text	 my goal is twofold� �� give the optimal �or Bayesian� decision theory
a geometric interpretation and 
� use that geometric content for designing
a deceivingly simple method for computing the single Perceptron with the
best possible generalization probability�

As shown in Figure �	 a Perceptron is a network consisting of N �binary or
real� inputs xi and a single binary output neuron� The output neuron sums
�rst all inputs with the corresponding synaptic weights wi	 then performs a
threshold operation according to

� � sign�
NX
i��

xiwi � �� � sign��x�w � �� � �� ���

In general	 the synaptic weights and the threshold can be arbitrary real
numbers� A network where �w has only binary components is called a binary
Perceptron� The output unit has binary values � � �� and labels the class to
which the input vector belongs� Both the weight vector �w � �w�� w�� � � � � wN�
and the threshold � should be learned from a set of M examples whose class
is known �the training set��






The Perceptron and its variants 

� are among the few networks for which
basic properties like the maximal information capacity	 �how many random�

examples can be faultlessly stored in the network�	 or the classi�cation er�
ror of certain learning algorithms	 �how many examples are needed in order
to achieve a given generalization probability�	 can be obtained analytically�
Such calculations are done by de�ning �rst a learning protocol� For exam�
ple	 one assumes that the examples are independently and identically sam�
pled from some stationary probability distribution	 that one has access to
a very large set of such examples for both training and testing purposes	
that no matter how many examples one generates	 there is always a sin�
gle Perceptron network solving the problem without errors	 etc� Almost
all statistical mechanical calculations require also the thermodynamic limit
N � �� M � �� � � M�N � const� These assumptions are needed for
technological reasons � some integrals must be concretely evaluated � but also
because otherwise the problem is mathematically not well de�ned�

In real life	 however	 one is confronted to situations which do not sat�
isfy some of these assumptions� one has a relatively small set of examples	
their distribution is unknown	 often not stationary	 the examples are not in�
dependently sampled� In a strict sense	 such problems are mathematically
not quanti�able� However	 even a small set of examples contains some in�
formation about the nature of the problem 
��� The basic question is then	
among all possible networks trained on this set	 which one has possibly the
best generalization probability� As explained below	 understanding the ge�
ometry of the version space leads to the correct answer and to algorithms for
computing it�

Our protocol assumes that both the training and test examples are drawn
independently and identically from the distribution P ��	�� The simplest way
to generate such a rule is to de�ne a teacher network with the same structure
as shown in Fig� �	 providing the correct class label � � �� for each input
vector� Given a set of M examples f�	���gM���� �	��� � IRN and their corre�
sponding binary class label �� � �� the task of the learning algorithm is to
�nd a student network which mimics the teacher by choosing the network pa�
rameters such as to classify correctly the training examples� Eq� ��� implies
that the learning task consists of �nding a hyperplane ��w� �x� � � separating

�By random vectors we mean in the following vectors sampled independently and iden�
tically from a constant distribution de�ned on the surface of the unit sphere ��x� �x� 	 
�
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the positive from the negative labeled examples �x � f�	���gM����

��w� �	���� � ��� �� � �

��w� �	���� � ��� �� � �� �
�

�� � � � ��

The typical situation is that either none or in�nitely many such solution
exist� The vector space whose points are the vectors ��w� �� is called the
version space and its subspace satisfying Eq� �
� the solution polyhedron�

Most often one wishes to minimize the average probability of class error
for a new �x vector drawn from P ��	�� In other situations another network	
which in average makes more errors but avoids very �bad� ones	 is preferable�
Yet another problem occurs when the data provided by the teacher is noisy

��� In what follows we shall restrict ourselves to the �standard� problem of
minimal average classi�cation error�

In theory	 one knows that for a given training set the optimal Bayes
decision 
�� implies an average over all f�w� �g solutions satisfying Eq� �
��
Since each solution is perfectly consistent with the training set	 in the absence
of any other a priori knowledge	 one must consider them as equally probable�
This is not the case	 for instance	 in the presence of noise� The best strategy
is then to associate with each point in the version space a Boltzmann weight
whose energy is the squared error function and whose temperature depends
on the noise strength 
���

For examples independently and identically drawn from a constant dis�
tribution �P ��	� � const� Watkin has shown that in the thermodynamic limit
the single Perceptron corresponding to the the center of mass of the solution
polyhedron has the same generalization probability as the Bayes�decision 
���
On the practical side	 known learning algorithms like Adaline 
�	 �� or the
maximal stability Perceptron �MSP� 
�	 ��	 ��� are not Bayes�optimal� In
fact	 if all input vectors have the same length	 then the maximal stability
Perceptron network corresponds to the center of the largest hypersphere in�
scribed into the solution polyhedron	 as shown in Section ��

There have been several attempts at developing learning algorithms ap�
proximating the Bayes�decision� Watkin used a randomized AdaTron algo�
rithm to sample the version space 
��� More recently	 Bouten et al de�ned
a class of convex functions whose minimum lies within the solution poly�
hedron� By changing the function�s parameters one can obtain a minimum
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which is a good approximation of the known Bayes solution 
�
�� This idea
is somewhat similar to the notion of an �analytic center of a convex poly�
tope� introduced by Sonnevend 
��� and used extensively for designing fast
linear programming algorithms 
���� A very promising but not yet fully ex�
ploited approach 
��� uses the Thouless�Anderson�Palmer �TAP� equations
originally developed for the spin�glass problem�

In this paper I propose a quite di�erent method	 based on an analogy to
classical	 ergodic billiards� Considering the solution polyhedron as a dynamic
system	 a long trajectory is generated and used to estimate the center of
mass of the billiard� The same idea can be applied also to other optimization
problems�

Questions related to the theory of billiards are brie�y considered in Sec�
tion 
� Section � sets up the stage by presenting an elementary geometric
analysis in two dimensions� The more elaborated geometry of the Perceptron
version space is discussed in Section �� An elementary algorithmic implemen�
tation for open polyhedral cones and their projective geometric closures are
summarized in Section �� Numerical results and a comparison to known an�
alytic bounds and to other learning algorithms can be found in Section ��
Our conclusions and further prospects are summarized in Section ��

� Billiards

A billiard is usually de�ned as a closed space region �compact set� P � IRN

dimensions� The boundaries of a billiard are usually piecewise smooth func�
tions� Within these boundaries a point mass �ball� moves freely	 except for
the elastic collisions with the enclosing walls� Hence	 the absolute value of
the momentum is preserved and the phase space B � P � SN��	 is the di�
rect product of P and SN��	 the surface of the N �dimensional unit velocity
sphere� Such a simple Hamiltonian dynamics de�nes a �ow and its Poincar�e
map an automorphism� The mathematicians have de�ned a �nely tuned hi�
erarchy of notions related to such dynamic systems� For instance	 simple
ergodicity as implied by the Birkho��Hincsin theorem means that the aver�
age of any integrable function de�ned on the phase space over a single but
very long trajectory equals the spatial mean �except for a set of zero mea�
sure�� Furthermore	 integrable functions invariant under the dynamics must
be constant� From a practical point of view this means that almost all very
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long trajectories will cover the phase space uniformly� Properties like mixing
�Kolmogorov�mixing� are stronger than ergodicity� They require the �ow to
mix uniformly di�erent subsets of B� In hyperbolic systems one can go even
further and construct Markov partitions de�ned on symbolic dynamics and
eventually prove related central limit theorems�

Not all convex billiards are ergodic� Notable exceptions are ellipsoidal bil�
liards	 which can be solved by a proper separation of variables 
���� Already
Jacobi knew that a trajectory started close to and along the boundaries of
an ellipse cannot reach a central region bounded by the so�called caustics�

In addition to billiards which can be solved by a separation of variables	
there are a few other exactly soluble polyhedral billiards 
���� Such solutions
are intimately related to the re�ection method � the billiard tiles perfectly
the entire space� A notable example is the equilateral triangle billiard	 �rst
solved by Lam�e in ���
� Other examples of such integrable billiards can be
obtained by mapping exactly soluble one dimensional many particle system
into a one�particle high�dimensional billiard 
����

Apart from these exceptions	 small perturbations in the form of the bil�
liard usually destroy integrability and lead to chaotic behaviour� For ex�
ample	 the stadium billiard �two half�circles joined by two parallel lines� is
ergodic in a strong sense	 the metric entropy is non�vanishing 
���� The dy�
namics induced by the billiard is hyperbolic if at any point in phase space
there are both expanding �unstable� and shrinking �stable� manifolds� A
famous example is Sinai�s reformulation of the Lorentz�gas problem� Deep
mathematical methods were needed to prove the Kolmogorov�mixing prop�
erty and in constructing the Markov partitions for the symbolic dynamics of
such systems 

���

The question whether a particular billiard is ergodic or not can be decided
in principle by solving the Schr�odinger problem for a free particles trapped
in the billiard�box� If the eigenfunctions corresponding to the high energy
modes are roughly constant	 then the billiard is ergodic� Only few general
results are known for such quantum problems� In fact	 I am not aware of
theoretical results concerning the ergodic properties of convex polyhedral
billiards in high dimensions� If all angles of the polyhedra are rational	 then
the billiard is weakly ergodic in the sense that the velocity direction will reach
only rational angles �relative to the initial direction�� In general	 as long as
two neighboring trajectories collide with the same polyhedral faces	 their
distance will grow only linearly� Once they are far enough as to collide with
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Figure 
� a� Halving the area along a given direction and b� the resulting
Bayes lines

di�erent faces of the polyhedron	 their distance will abruptly increase� Hence	
except for very special cases with high symmetry	 it seems unlikely that high
dimensional convex polyhedra as generated by the training examples will fail
to be ergodic�

� A simple geometric problem

For the sake of simplicity let us illustrate our approach in a two�dimensional
setting� In the next Section we will show how the concepts developed here
generalize to the more challenging Perceptron problem�

Let P be a closed convex polygon and �v a given unit vector	 de�ning a
particular direction in the IR� space� The direction of vector �v can be also
described by the angle 
 it makes with the x�axis� Next	 construct the line
perpendicular to �v which halves the area of the polygon P	 A� � A�	 as
illustrated in Fig� 
a� We will show in the next Section that this geometric
construction is analogue to the Bayes decision in version space� Choosing a
set of vectors �v oriented at di�erent angles leads to the set of �Bayes lines�
seen in Fig� 
b� It is obvious that these lines do not intersect at one single
point�

The same task is computationally not feasible in a high dimensional ver�
sion space� It is certainly more economical to compute and store a single
point �r�	 which represents optimally the full information contained in Fig�
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b� As evident from Fig� 
b	 the majority of lines lines passing through �r�
will not partition P in equal areas but will make some mistakes	 denoted by
�A � A� � A� 	� �� �A depends on both the direction of �v and on the
polygon P	 �A � �A��v�P�� Di�erent optimality criteria can be formulated	
depending on the actual application� The usual approach would correspond
to minimizing the squared area�di�erence averaged over all possible �v direc�
tions�

�r� � arg min h��A��i � arg min
Z

��A����v�p��v� �dv ���

where p��v� is some a priori known distribution of vectors �v� Another possible
criterion optimizes the worst case loss over all directions�

�r� � arg inf sup
n
��A��

o
� ���

etc� In what follows the point �r� is called the Bayes point�
The calculation of the Bayes point according to Eq� ��� is computationally

feasible but a lot of computer power is still needed� A good estimate of the
Bayes�point is given by the center of mass of the polgon P�

�S �

R
P �r���r�dAR
P ���r�dA

���

where ���r� � const is the surface mass density�
In Table I we presents exact numerical results for the x and y coordinates

of both the Bayes point and the center of mass� The center of mass is an
excellent approximation of the Bayes point� In very high dimensions	 as
shown by T� Watkin 
��	 �r� � �S�

A polyhedron can be described either by the list of its vertices or by the
set of vectors normal to its facets� The transition from one representation
to another requires exponential many aritmetic operations as a function of
dimension� Therefore	 in typical classi�cation tasks this transformation is
not practicable�

For �round� polygons �polyhedra�	 the center of the smallest circumscribed
and of the largest inscribed circle �sphere� is a good choice for approximating
the Bayes point in the vertex and the facet representation	 respectively� Since
in our case the polyhedron generalizing P is determined by a set of normal
vectors �facet representation�	 only the largest inscribed circle �sphere� is a
feasible approximation	 see Fig� �� The numerical values of the �xR� yR�
coordinates of the center point are displayed in Table I�
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Figure �� The largest inscribed circle� The center of mass �cross� is plotted
for comparison�

A better approximation would be to compute the center of the largest
volume inscribed ellipsoid 

��	 a problem also common in nonlinear opti�
mization 


�� The best known algorithms are of order O�M���� operations	
where M is in our case the number of examples� Additional logarithmic
factors have been neglected	 for details see 


��

The purpose of this paper is to show that a reasonable estimate of �r�
can be obtained faster by following the �ergodic� trajectory of an elastic
ball inside the polygon	 as shown in Fig� �a for four collisions� Fig� �b
shows the trajectory of Fig� �a from another perspective	 by performing
an appropriate re�ection on each collision edge� A trajectory is periodic if
after a �nite number of such re�ections the polygon P is mapped onto itself�
Fully integrable systems correspond in this respect to polygons which will �ll
without holes the whole space �that this geometric point of view applies also
to other fully integrable systems is nicely exposed in 

����

If the dynamics is ergodic in the sense discussed in Section 
	 then a long
enough trajectory should cover without holes the surface of the polygon� By
computing the total center of mass of the trajectory one should then obtain a
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Billiard N=5

Figure �� a� A trajectory with four collisions and b� its �straightened� form

good estimate of the center of mass� The question whether a billiard formed
by a �generic� convex polytope is ergodic or not is to my knowledge not solved�
Extensive numerical calculations are possible only in low dimensions� The
extent to which the trajectory covers P after ���� collisions is visualized in
Fig� �� By continuing this procedure	 one can convince oneself that all holes
are �lled up	 so that the trajectory will visit every point inside P�

The next question is whether the area of P is homogeneously covered by
the trajectory� The numerical results summarized in Table I were obtained by
averaging over ��� di�erent trajectories for each given length� As the length
of the trajectory is increased	 these averages converge to the center of mass�
Also displayed are the empirical standard deviations �x�y of the trajectory
center of mass coordinates and the average squared area di�erence	 h�A�i�
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Figure �� A trajectory �shown as a dotted line� with ���� collisions

Method x �x y �y h�A�i
Bayes�point ������ ������ ����
�

Center of Mass ���
�� ������ ���
��
Largest inscribed circle ������ 
����
 ������
Billiard � �� collisions �����
 ����� ����
� ����� ���
��
Billiard � ��� collisions ������ ��
�� ������ ����� 
��
��
Billiard � ��� collisions ������ ����� ������ ���
� ������
Billiard � ��	 collisions ���
�
 ���
� ������ ����� ������
Billiard � ��� collisions ���
�� ����� ������ ����� ������
Billiard � ��
 collisions ���
�� ����� ������ ����� ���
��

Table I� The exact coordinates �x� y� of the Bayes point for the polygon

P � ��� ��� ��� ��� ��� ��� ���� ��� ����
� and its various estimates	

center of mass
 maximal inscribed circle
 trajectories of di�erent lengths

� The geometry of Perceptrons

Consider a set of M training examples	 consisting of N �dimensional vectors
�	��� and their class ��	 � � �� � � � �M � Now let us introduce the N � ��
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dimensional vectors �
��� � ����	�������� and �W � ��w� ��� In this representa�
tion Eq� 
 becomes equivalent to a standard set of linear inequalities

� �W� �
���� � � � � ���

The parameter � � minf�g� �W� �
���� is called the stability of the linear
inequality system� A bigger � implies a solution which is more robust against
small changes in the example vectors�

The vector space whose points are the examples �
��� is the example space�
In this space �W corresponds to the normal vector of a N � � dimensional
hyperplane� The version space is the space of the vectors �W� Hence	 a
given example vector 
 corresponds here to the normal of a hyperplane� The
inequalities ��� de�ne a convex polyhedral cone whose boundary hyperplanes

are determined by the training set
n
�
���

oM
���

�

How can one use the information contained in the example set for making
the best average prediction on the class label of a new vector drawn from
the same distribution� Each new presented example �
�new� corresponds to a
hyperplane in version space� The direction of its normal is de�ned up to a
� � �� factor	 the corresponding class�

The best possible decision for the classi�cation of the new example follows
the Bayes scheme� for each new �test� example generate the corresponding
hyperplane in version space� If this hyperplane does not intersect the so�
lution polyhedron	 consider the normal to be positive when pointing to the
part of the version space containing the solution polyhedron� Hence	 all Per�
ceptrons satisfying Eq� ��� will classify unanimously the new example� If
the hyperplane cuts the solution polyhedron in two parts	 point the normal
towards the bigger half� Therefore	 the decision which minimizes the average
generalization error is given by evaluating the average measure of pro vs the
average measure of contra votes of all Perceptrons making no errors on the
training set�

We see that the Bayes decision is analogous to the geometric problem
described in the previous Section� However	 the solution polyhedral cone is
either open or is de�ned on the unit N ���dimensional hypersphere �see also
Fig� �b for an illustration��

The practical question is now to �nd simple approximations for the Bayes
point� One possibility is to consider the Perceptron with maximal stability	
de�ned as following�
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�WMSP � arg max �W
� � �W� �W� � � ���

or	 equivalently	 as

�w � arg max�w f�� � ��g ��w� �w� � � ���

where � � ��� � ����
 and � � ��� � ����
� The quadratic conditions

� �W� �W� � � 
��w� �w� � �� are necessary because otherwise one could multiply
�w and ���� by a large number	 making �� � �� and thus � arbitrary large�

Eq� ��� has a very simple geometric interpretation	 shown in Fig� �� Con�

sider the convex hulls of the vectors �	��� belonging to the positive examples
�� � � and of those in the negative class �	���	 �� � ��	 respectively� Ac�
cording to Eq� ���	 the Perceptron with maximal stability corresponds to the
slab of maximal width one can put between the two convex hulls �the �max�
imal dead zone� 

���� Geometrically	 this problem is equivalent �dual� to
�nding the direction of the shortest line segment connecting the two convex
hulls �the minimal connector problem�� Since the dual problem minimizes
a quadratic function subject to linear constraints	 it is a quadratic program�
ming problem� By choosing � � �����

�
�dotted line in Fig� � � one obtains the

maximal stability Perceptron �MSP��
The direction of �w is determined by at most N � � vertices taken from

both convex hulls	 called active constraints� Fig� �a shows a simple two
dimensional example	 the active constraints are labelled by A	 B	 and C	
respectively� The version space is three dimensional	 as shown in Fig� �b�
The three planes represent the constraints imposed by the examples A �left
plane�	 B �right plane�	 and C �lower plane�� The bar points from the ori�
gin to the point de�ned by the MSP solution� The sphere corresponds to
the normalization constraint� If the example vectors �	��� have all the same
length N 	 then Eqs� ��	 �� imply that the distance between the �WMSP and
the hyperplanes corresponding to active constraints are all equal to �max

N �
All other hyperplanes participating in the polyhedral cone are further away�
Accordingly	 the maximal stability Perceptron corresponds to the center of
the largest circle inscribed into the spherical triangle de�ned by the inter�
section of the unit sphere with the solution polyhedron	 the point where the
bar intersects the sphere in Fig� �b�

A fast algorithm for computing the minimal connector requiring in aver�
age O�N�M� operations and O�N�� storage place can be found in 
����
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Figure �� a� The Perceptron with maximal stability in example space� b� The
solution polyhedron �only the bounding examples A
 B
 and C are shown��
See text for details�

� How to play billiard in version space

Each billiard game starts by �rst placing the ball�s� on the pool� This is not
always a trivial task� In our case	 the maximal stability Perceptron algorithm

��� does it or signals that a solution does not exist� The trajectory is initiated
by generating at random a unit direction vector �v in version space�

The basic step consists of �nding out where � on which hyperplane � the
next collision will take place� The idea is to compute how much time the
ball needs until it eventually hits each one of the M hyperplanes� Given
a point �W � ��w� �� in version space and a unit direction vector �v	 let us

denote the distance along the hyperplane normal �
 by dn and the component
of �v perpendicular to the hyperplane by vn� In this notation the �ight time
needed to reach this plane is given by

dn � � �W� �
�

vn � ��v� �
� ���

� � �
dn
vn

After computing all M �ight times	 one looks for the smallest positive �min �
minf�g � � �� The collision will take place on the corresponding hyperplane�
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Figure �� Bouncing in version space� a� Euclidean b� spherical geometry�

The new point �W � and the new direction �v� are calculated as

�W� � �W� �min�v ����

�v� � �v� 
vn�
 ����

This procedure is illustrated in Fig� �a� In order to estimate the center
of mass of the trajectory one has �rst to normalize both �W and �W�� By
assuming a constant line density one assigns to the �normalized!� center of

the segment
�W�� �W

� the length of the vector �W� � �W� This is then added
to the actual center of mass � as when adding two parallel forces of di�erent
lengths� In high dimensions �N � ��	 however	 the di�erence between the
mass of the full N � � dimensional solution polyhedron and the mass of the
bounding N dimensional boundaries becomes negligible� Hence	 we could as
well just record the collision points	 assign them the same mass density	 and
construct their average�

Note that by continuing the trajectory beyond the �rst collision plane
one can sample also regions of the solution space where the �W makes one	
two	 etc� mistakes �the number of mistakes equals the number of crossed
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boundary planes�� This additional information can be used for taking an
optimal decision when the examples are noisy 
���

Since the polyhedral cone is open	 the implementation of this algorithm
must take into account the possibility that the trajectory might escape to
in�nity� The minimal �ight time becomes then very large	 � � �max� When
this exception is detected	 a new trajectory is started from the maximal
stability Perceptron point in a yet another random direction� Hence	 from a
practical point of view	 the polyhedral solution cone is closed by a spherical
shell with radius �max acting as a special �scatterer�� This 
ipper procedure
is iterated until enough data is gathered�

If we are class conscious and want to remain in the billiard club	 we must
do a bit more� As explained above	 the solution polyhedral cone can be
closed by normalizing the version space vectors� The billiard is now de�ned
on a curved space� However	 the same strategy works also here if between
subsequent collisions one follows geodesics instead of straight lines� Fig� �b
illustrates the change in direction for a small time step	 leading the the well
known geodesic di�erential equation on the unit sphere�

��W � �v ��
�

��v � � �W ����

The solution of this equation costs additional resources� Actually	 the solu�
tion of the di�erential equation is strictly necessary only when there are no
bounding planes on the actual horizon �� Once one or more boundaries are
�visible�	 the choice of the shortest �ight time can be evaluated directly	 since
in the two geometries the �ight time is monotonously deformed� Even so	
the �ipper procedure is obviously faster�

Both variants deliver interesting additional informations	 like the mean
escape time of a trajectory or the number of times a given border plane
�example� has been bounced upon� The collision frequency classi�es the
training examples according to their �surface� area in the solution polyhedron
� a good measure of their relative �importance��

�Assuming light travels along Euclidean straight lines
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� Results and Performance

This Section contains the results of numerical experiments performed in or�
der to test the billiard algorithm� First	 the ball is placed inside the billiard
with the maximal stability Perceptron algorithm as described in 
���� Next	
a number of typically O�N�� collision points are generated� Since the com�
putation of one collision point requires M scalar products of N dimensional
vectors	 the total load of this algorithm is O�MN��� The choice for N� col�
lision points is somewhat arbitrary and is based on the following considera�
tions� By using the billiard method one generates many collision points lying
on the borders of the solution polyhedron� We could try to use this informa�
tion for approximating the solution polyhedron with an ellipsoidal cone� The
number of free parameters involved in the �t is of the order O�N��� Hence	
at least a constant times that many points are needed� Such a �tted ellipsoid
delivers also an estimate on the decision uncertainty� If one is not interested
on this information	 it is enough to monitor how one or more projections of
the center of mass estimate changes as the number of collisions increases�
Once these projections become stable the program can be stopped�

T� Watkin argues that the number of sampling points should be of O���

��� I �nd his arguments not convincing� For example	 Fig� � shows how
the average generalization probability changes as the number of collisions
increases up to N� steps� Since �nding a point within the solution polyheder
is algorithmically equivalent to solving a linear programming problem	 his
method of sampling the version space with randomly started AdaTron gra�
dient descent �or any other Perceptron learning method� requires at least
O�N�M� operations per sampling point	 compared to O�NM��collison in
the billiard method�

In a �rst test	 a known �teacher� Perceptron �T was used to label the
randomly generated examples for training� The generalization probability
G�	 � � M�N 	 was then computed by measuring the overlap between the
resulting solution ��student�� Perceptron with the teacher Perceptron�

G��� � ��
�

�
cos����T� �w� ��T � �T � � ��w� �w� � � ����

The numerical results obtained from �� di�erent realizations for N � ���
are compared with the theoretical Bayes�learning curve in Fig� �� Fig� ��
shows a comparison between the billiard results and the maximal stability

��
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Figure �� Average of the generalization probability as a function of the number
of collisions
 N � ���
 M � ����

Perceptron �MSP� results� Although the di�erences seem small compared
to the error bars	 the billiard solution was in all realizations consistently
superior to the MSP�

Fig �� shows how the number of constraints �examples� bordering the
solution polyhedron changes with increasing � � M

N
�

As the number of examples increases	 the probability of escape from the
solution polyhedron decreases	 the network reaches its storage capacity� Fig�
�
 shows the average number of collisions before escape as a function of
classi�cation error	 parameterized through � � M

N
� Therefore	 by measuring

either the escape rate or the number of �active� examples we can estimate the
generalization error without using test examples� Note	 however	 that such
calibration graphs should be calculated for each speci�c distribution of the
input vectors�

Randomly generated training examples lead to rather isotropic polyhe�
dra	 as illustrated by the small di�erence between the Bayes� and the MSP
learning curve �see Fig� ���� Therefore	 we expect that the billiard approach
leads to bigger improvements when applied to real�life problems with strongly
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Figure ��� Average generalization probability
 same parameters as above�
Lower curve	 the maximal stability Perceptron algorithm� Upper curve	 the
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anisotropic solution polyhedra� Similar improvements can be expected also
when using constructive methods for multilayer Perceptrons which use it�
eratively the Perceptron algorithm 

��� Such procedures have been used	
for example	 for classifying handwritten digits 

��� For all such examples
sets available to me	 the introduction of the billiard algorithm on top of the
maximal stability Perceptron leads to consistent improvements of up to �"
in classi�cation probability�

A publicly available data set known as the sonar�problem 

�	 
�� con�
siders the problem of deciding between rocks and mines from sonar data�
The input space is N � �� dimensional and the whole set consists of ���
mine and �� rock examples� We go down the list of rock signals putting
alternate members into the training and test sets we do the same with the
set of mine signals� Since the data sets are sorted by increasing azimuth	
this gives us training and testing with equal lengths ���� signals� and with
the population of azimuth angles matched as closely as possible� Gorman
and Sejnowski consider a three layer feedforward neural network architec�
ture with di�erent number of hidden units	 trained by the back�propagation
algorithm 

��� Their results are summarized and compared to our results in
Table II�

By applying the MSP algorithm we �rst found that the whole data �train�
ing � test� set is linearly separable� Second	 by using the MSP on the train�
ing set we obtain a ����" classi�cation rate on the test set �compared to
����" in 

���� Playing billiard leads to a ����" classi�cation rate �in both
cases the training set was faultlessly classi�ed�� This improvement amount
is typical also for other applications� The number of active examples �those
contributing to the solution� was �
 for the maximal stability Perceptron and
�� during the billiard�

By computing the maximal stability and the Bayes Perceptrons we did
not use any information available on the test set� On the contrary	 many
networks trained by back�propagation are slightly �adjusted� to the test set by
changing network parameters � output unit biases and�or activation function
decision bounds� Other training protocols also allow either such adjustments
or generate a population of networks	 from which a �best� is chosen based on
test set results� Although such adaptive behavior might be advantageous in
many practical applications	 it can be misleading when trying to infer the
real capability of the trained network�

In the sonar problem	 for instance	 we know that a set of Perceptrons


�



separating faultlessly the whole data �training � test� set is included in the
version space� Hence	 one could use the billiard or other method to �nd
it� This would be an extreme example of �adapting� our solution to the
test set� Such a procedure is especially dangerous when the test set is not
�typical�� Since in the sonar problem the data was divided in two equal
sets	 by exchanging the roles of the training and test sets one would expect
similar quality results� However	 in this case much weaker results �����"
classi�cation rate� are obtained� This shows that the two sets do not contain
the same amount of information about the common Perceptron solution�

Hidden " Right on Std� " Right on Std�
Units Training set Dev� Test Set Dev�
� ���� ��� ���� ���
�#MSP ����� � ���� �
�#Billiard ����� � ���� �

 ���
 
�
 ���� ���
� ���� ��� ���� ���
� ���� ��� ���� 
��
�
 ���� ��� ���� ���

� ����� ��� ���
 ���

Table II� Results for the sonar classi�cation problem from ����� ��MSP is the
maximal stability Perceptron
 ��Billiard is the Bayes billiard estimate�

Looking at the results of Table II it is hard to understand how ��� training
examples could substantiate the excellent average test set error of ��������"
for networks with �
 hidden units ���� free parameters�� The method of
structural risk minimization 
�� uses uniform bounds for the generalization
error in networks with di�erent VC�dimensions� To �rmly establish a classi��
cation probability of ��" one needs about ten times more training examples
already for the linearly separable class of functions� A network with �
 hid�
den units has certainly a much larger capacity and requires that many more
examples� One could argue that each of the �
 hidden units has solved
the problem on its own and thus the network acts as a committee machine�
However	 such a majority decision should be at best comparable to the Bayes
estimate�







� Conclusions and Prospects

The study of dynamic systems led already to many interesting practical ap�
plications in time�series analysis	 coding	 and chaos control� The elementary
application of Hamiltonian dynamics presented in this paper demonstrates
that the center of mass of a long dynamic trajectory bouncing back and forth
between the walls of the convex polyhedral solution cone leads to a good es�
timate of the Bayes�decision rule for linearly separable problems� Somewhat
similar ideas have been recently applied to constrained nonlinear program�
ming 
����

Although the geometric view presented in this paper overemphasizes the
role played by extremal �active� vertices of the example set and faultlessly
trained Perceptrons	 it is not di$cult to make these estimates more robust�
For example	 some of the extremal examples can be removed to test � and
improve � the stability of the MSP� Similarily	 the solution polyhedron can
be expanded to include solutions with non�zero training errors	 allowing for
learning noisy examples�

Since the Perceptron problem is equivalent to the linear inequalities prob�
lem Eq� ���	 it has the same algorithmic complexity as linear programming�
The theory of convex polyhedra plays a central role both in mathematical
programming and in solving NP�hard problems such as the traveling sales�
man problem 

�	 ����

Viewed from this perspective	 the ergodic theory of convex polyhedral
billiards might provide new	 e�ective tools for solving di�erent combinatorial
optimization problems 

��� A big advantage of such ray�tracing algorithms
is that they can be run in parallel by following up several trajectories at the
same time�

The success of further applications depends	 however	 on methods of mak�
ing such simple dynamics strongly mixing� On the theoretical side more
general results	 applicable to large classes of convex polyhedral billiards are
called for� In particular	 a good estimate of the average escape �or typical
mixing� time is needed in order to bound the average behavior of future
�ergodic� algorithms�


�



Acknowledgments

I thank Manfred Opper for the analytic Bayes data and Bruno Eckhardt for
discussions on billiards� For a LaTEXoriginal of this paper with PostScript
�gures and a C�implementation of the billiard algorithm point your browser
at http���www�icbm�uni�oldenburg�de��rujan�rujan�html�

References


�� F� Rosenblatt� The perceptron� a probabilistic model for information
storage and organization in the brain	 Psychological Review �� ���



� J� Hertz	 A� Krogh	 and R� G� Palmer� Introduction to the Theory of
Neural Computation	 Addison�Wesley	 ����


�� G� P�olya� Mathematics and Plausible Reasoning	 Vol II	 Patterns of
Plausible Inference	 Second Edition	 Princeton University Press	 ����


�� M� Opper and D� Haussler� Generalization performance of Bayes opti�
mal classi�cation algorithm for learning a Perceptron	 Physical Review
Letters �� ������ 
���


�� M� Opper and D� Haussler� Calculation of the learning curve of Bayes
optimal classi�cation algorithm for learning a Perceptron with noise	
contribution to IVth AnnualWorkshop on Computational Learning The�
ory �COLT���	 Santa Cruz ����	 Morgan Kaufmann	 San Mateo	 ���
	
pp �����


�� T� Watkin� Optimal learning with a neural network	 Europhysics Letters
�� ������ ���


�� B� Widrow and M� E� Ho�� Adaptive switching circuits	 ���� IRE
WESCON Convention Record	 New York	 IRE	 ��


�� S� Diederich and M� Opper� Learning of Correlated Patterns in Spin�
Glass Networks by Local Learning Rules	 Physical Review Letters ��
������ ���


�




�� D� Vapnik� Estimation of Dependencies from Empirical Data	 Springer
Verlag	 ���
 � see Addendum I


��� J� Anlauf and M� Biehl� The AdaTron� an adaptive Perceptron algo�
rithm	 Europhysics Letters �� ������ ���


��� P� Rujan� A fast method for calculating the Perceptron with maximal
stability	 Journal de Physique �Paris� I 	 ������ 
��


�
� M� Bouten	 J� Schietse	 and C� Van den Broeck� Gradient descent learn�
ing in Perceptrons� a review of possibilities	 Physical Review E �� ������
����


��� Gy� Sonnevend� New algorithms based on a notion of �centre� �for sys�
tems of analytic inequalities� and on rational extrapolation � in K�H�
Ho�mann	 J��B� Hiriart�Urruty	 C� Lemarechal and J� Zowe	 Eds� Trends
in Mathematical Optimization � Proceedings of the �th French�German
Conference on Optimization
 Irsee ���� ISNM	 Vol� �
 Birkhauser	
Basel	 ����


��� P� M� Vaidya� A new algorithm for minimizing a convex function over
convex sets	 in Proceedings of the ��th Annual FOCS Symposium	 Re�
search Triangle Park	 NC	 ���� �IEEE Computer Society Press	 Los
Alamitos	 CA	 ����� �������


��� M� Opper� � Bayesian Learning �	 talk at the Neural Networks for Physi�
cists 		 Minneapolis	 ����


��� J� Moser� Geometry of quadrics and spectral theory	 in The Chern Sym�
posium	 Y� Hsiang et al �Eds��	 Springer�Verlag ����	 p� ���


��� J� R� Kuttler and V� G� Sigillito� Eigenvalues of the Laplacian in two
dimensions 	 SIAM Review �� ������ ���


��� H�R� Krishnamurthy	 H�S� Mani	 and H�C� Verma� Exact solution
of Schr�odinger equation for a particle in a tetrahedral box	 Journal of
Physics A �� ����
� 
���


��� L� A� Bunimovich� On the ergodic properties of nowhere dispersing
billiards	 Communications in Mathematical Physics �� ������ 
��


�





�� L� A� Bunimovich and Y� G� Sinai� Markov partitions for dispersed
billiards	 Communications in Mathematical Physics �� ������ 
��



�� P� Rujan� Ergodic billiards and combinatorial optimization	 in prepara�
tion




� L� G� Khachiyan and M� J� Todd� On the complexity of approximating
the maximal inscribed ellipsoid for a polytope	 Mathematical Program�
ming �� ������ ���



�� B� Sutherland� An Introduction to the Bethe Ansatz	 in Exactly Solv�
able Problems in Condensed matter and Relativistic Filed Theory	 B�S�
Shastry	 S�S� Jha and V� Singh	 �Eds�	 Lecture Notes in Physics �
�	
Springer�Verlag	 ����	 �



�� P� F� Lampert� Designing pattern categories with extremal paradigm
information	 in Methodologies of Pattern Recognition	 M� S� Watanabe
�Ed��	 Academic Press	 NY	 ����	 p ���



�� M� Marchand	 M� Golea	 and P� Ruj�an� Convergence Theorem for
Sequential Learning in Two Layer Perceptrons	 Europhysics Letters ��
������ ���



�� S� Knerr	 L� Personnaz	 and G� Dreyfus� Single layer learning revis�
ited� a stepwise procedure for building and training a neural network	
in Neurocomputing	 F� Fogelman and J� H�erault �Eds�	 Springer Verlag
����



�� R�P� Gorman and T� J� Sejnowski� Analysis of hidden units in a layered
network trained to classify sonar targets	 in Neural Networks � ������
��



�� S� E� Fahlman�s collection of neural network data� included in the public
domain software am�����



�� E�L� Lawler	 J�K� Lenstra	 A�H�G� Rinnoy Kan	 and D�B� Shmoys �Eds��
The Traveling Salesman Problem	 John Wiley	 NY	 ����


��� T� F� Coleman and Yuying Li� On the convergence of interior�re�ective
Newton methods for nonlinear minimization subject to bounds	 Mathe�
matical Programming �� ������ ���


�




��� M� Padberg and G� Rinaldi� Optimization of a ��
�city symmetric trav�
eling salesman by branch and cut	 Oper
 Res
 Lett
 � ������ � and
A branch�and�cut algorithm for the resolution of large�scale symmetric
traveling salesman problems	 IASI preprint R� 
��	 ����


�


